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Abstract—Capacitive sensor array (CSA) is vital in precise
monitoring for lab-on-chip (LOC) systems. However, shrinking
electrode sizes to increase spatial resolution bring challenges like
noise interference and large data volumes. This paper presents an
FPGA-based system that addresses these problems with multiple
sampling (MS) and pixel-wise accumulation (PWA). MS reduces
Gaussian noise by sampling multiple frames and retaining only
representative data points, while PWA compresses data using
Block RAM and minimal combinational logic, reducing size
from 118 Mb to 0.46 Mb and boosting SNR to 25.30 dB. The
system enables real-time monitoring every 5 seconds instead of
17 minutes, with pipeline sensing and transmission further op-
timizing sensing time. Experiments demonstrate its effectiveness
in distinguish between droplets and monitor evaporation in real
time. MS and PWA can be easily integrated into future chip
designs, offering scalable solutions for fast and precise monitoring
in LOC environments.

Index Terms—Lab-on-Chip, Capacitance Sensor Array, Pixel-
Wise Accumulation, Multiple Sampling, Droplet Sensing.

I. INTRODUCTION

The demand for real-time, high-precision monitoring in
biotechnology has driven advancements in capacitive sensor
array (CSA) for lab-on-chip (LOC) systems. These CSAs,
based on complementary metal-oxide-semiconductor (CMOS)
technology, are widely used for detecting capacitance varia-
tions across two-dimensional surfaces, making them essential
for applications such as droplet analysis [1]–[3], cell growth
monitoring [4]–[7], DNA detection [8], particle identification
[9], drug screening [10], and super-resolution imaging [11].

However, as electrode sizes shrink to improve spatial reso-
lution, real-time data acquisition and noise reduction become
critical issues. Smaller electrodes with higher throughput de-
crease the signal-to-noise ratio (SNR) and pose challenges
in processing large data volumes in real time. For instance,
in [3], scanning 256 electrodes required approximately 7
minutes. Similarly, the CSA in [12] achieved 43 fps at 10
MHz clock speed, but processing and transmitting data from
7200 electrodes with a 4×4 fusion-pixel arrangement took
about 17 minutes due to the transmission of 118 Mb of data
at a 115200 baud rate. These limitations highlight the need
for more efficient data processing and noise reduction at the
system level to ensure fast and reliable sensor readings.
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Fig. 1: ts-TDC-based CSA circuit behavior. (a) circuit diagram
(b) PWA and MS diagram and (c) timing diagram

In this work, we propose an integrated noise reduction
and data compression solution for time-sharing time-to-digital
converter (ts-TDC) based CSAs [12], [13]. By combining
multiple sampling (MS) and pixel-wise accumulation (PWA)
techniques on a field programmable gate array (FPGA), we
compress all the CSA’s binary output into a single 16-bit value
for each electrode, reducing the data size from 118 Mb to 0.46
Mb, as shown in Fig 1(b). MS further reduces random noise
by averaging data from multiple frames, achieving this with
minimal additional scanning time and maximum 256 times
of multiple sampling result for each electrode. The following
sections will introduce the CMOS capacitive sensor array,
present optimized noise reduction algorithms, and demonstrate
how this system improves image quality and accelerates data
processing in high-throughput CSA applications.

II. CMOS CAPACITIVE SENSOR ARRAY

The ts-TDC based CSA is designed to convert capacitance
values into charging time differences, followed by adjusting



Fig. 2: Multiple sampling timeline for ts-TDC based CSA

the D-flip-flop (DFF)’s sampling times to determine the fine
differences between these charging times. This approach al-
lows for the sharing of components on the time axis, reducing
the area required to replicate multiple TDCs for whole-array
and enabling the system to accommodate a larger number of
electrodes. As shown in Fig. 1(a), three key components are
involved in each electrode: the charging circuit, fusion-pixel
electrode cell (FPEC), and sampling unit. Charging circuit
consists of a series of PMOS transistors to provide a small
current. The FPEC can be programmed to adjust the electrode
size by toggling the connected NMOS transistors, and the
sampling unit is a multiplexed DFF either to sample the
charging time or to scan out the data with a daisy scan-chain.

The sampling procedure is illustrated in Fig. 1(c), the
charging process begins when the sensing pulse SP falls,
prompting the current source to charge the FPEC until the
voltage at node N0 reaches approximately 80% of the supply
voltage. A high-skew inverter then converts the voltage at N0

into a sharp digital signal at N1. Since C1 is smaller than C2,
node N1 of C1 experiences an earlier voltage drop than N1
of C2. The DFF sampling process begins with a clock signal
CLKDFF at initial delay codes Dstart, getting both Q1 and
Q2 to logic 1. The sampling process is repeated with a slight
delay increment Dstart + 1 in DFF sampling times. After the
delay reaches time t1, Q1 transitions to logic 0 while Q2

remains at logic 1. Subsequently, after t2, Q2 also transitions
to logic 0. By simply summing all the Q values over time,
the relative capacitance differences between C1 and C2 can
be quantified. Note that the sensing window, from negative
edge of SP to negative edge of N1, would be interference by
random noise, resulting in a uncernainty in the measurement.

III. SYSTEM DESIGN AND IMPLEMENTATION

A. Random Noise Reduction

Random noise, often modeled as Gaussian noise, is a
common source of interference in CSA systems, leading to
inaccuracies in sensor readings. To mitigate this noise, the
multiple sampling algorithm 1 is implemented on the FPGA to

Algorithm 1 Multiple Sampling on CSA

Input: N , M , Dstart, Dend, τth, L.
Output: Compressed array data stored in FIFO.

1: Reset BRAM1 and BRAM2 to zeros.
2: for n = 1 to N do
3: for delay = Dstart to Dend do
4: for m = 1 to M do
5: Charge & Sample with delay
6: for addr = 1 to L do
7: a, b← BRAM1(addr),BRAM2(addr)
8: CSAdata ← ScanChain.pop
9: if m ̸= M and n ̸= N then ▷ Case 1

10: BRAM1(addr)← CSAdata + a
11: else if m = M and n ̸= N then ▷ Case 2
12: if CSAdata +D1 > τth then
13: BRAM2(addr)← b+ 1
14: else
15: BRAM2(addr)← b
16: end if
17: BRAM1(addr)← 0
18: else ▷ Case 3
19: if CSAdata + a > τth then
20: FIFO.push((b+ 1)/N)
21: else
22: FIFO.push(b/N)
23: end if
24: BRAM1(addr),BRAM2(addr)← 0
25: end if
26: end for
27: end for
28: end for
29: end for

average data from multiple frames. The algorithm operates in
two main stages, as depicted in Fig. 2: (1) multiple sampling,
where each delay code is sampled M times before moving to
the next one, and (2) repeating this process N times across
a given delay code range, from Dstart to Dend. Both stages
are aimed at reducing random noise, however, a large M may
introduce motion blur effect due to long sampling time. Hence,
the optimal M and N are determined by the trade-off between
noise reduction and motion blur effect. To ensure efficient
data storage with block random access memory (BRAM) and
minimum combinational logic, BRAM1 and BRAM2 are used
to store the accumulated data for each electrode in stage (1)
and (2), respectively, while a FIFO buffer is used to transmit
the averaged data to the personal computer (PC).

In algorithm 1, each iteration starts with charging the
electrode and sampling by capturing a 1 or 0 after waiting
for delay, taking about 30 cycles denoted as TSample. The
captured data is then retrieved from the scan chain and stored
in either BRAM1 or BRAM2. Scan-out data takes 720 cycles,
denoted as TScanOut, to complete the entire scan chain with
length L. The algorithm handles three specific cases: (1) when
m ̸= M and n ̸= N, (2) when m = M and n ̸= N, and (3)



Fig. 3: FPGA implementation for PWA and MS

when m = M and n = N. In case (1), data is accumulated
in BRAM1. In case (2), the data in BRAM1 is compared
to the threshold value τth, and the results are accumulated
in BRAM2. τth is set to half of M because exceeding this
threshold indicates higher confidence in declaring the value
as 1. Finally, in case (3), the accumulated data in BRAM2 is
averaged by dividing by N and pushed into the FIFO buffer
for transmission. Here, dividing by N is equivalent to shifting
right by

√
N. Note that all cases perform along the scan chain

at the same time, i.e. the data is pop out from the scan chain
and stored in BRAM1, BRAM2, or FIFO in parallel.

B. FPGA Implementation

Due to the large amount of data generated by MS, directly
transmitting all raw data to the PC is inefficient. Therefore, an
FPGA-based architecture, shown in Fig. 3, was implemented
to optimize throughput and reduce computational overhead.
The design incorporates ”PWA modules,” each consisting of 8-
bit BRAM1, 16-bit BRAM2, a 16-bit FIFO, and combinational
logic, responsible for data storage and processing. The number
of PWAs was selected to match the number of scan-chains in
the CSA, with memory depth proportional to the scan-chain
length. In our design, we implement 10 scan-chains with 720
electrodes each, requiring 10 PWAs.

Fig. 4 illustrates the memory hierarchy and data flow.
BRAM1 can store up to 256 times MS results per electrode,
denoted as ΣM

i=1si, where si is the sampling value for the
i-th times. After M times, 8-bit data is compressed to 1-bit
representative value, and stored in BRAM2. BRAM2 stores
16-bit accumulated results for each electrode, denoted as
ΣN

k=1Σ
Dend

j=Dstart
Sj,k, where Sj,k is the compressed value for

the j-th delay code in the k-th iteration. Maximum number of
N depends on the delay range Drange = Dend−Dstart+1.
After averaging by N, data is pushed into FIFO and transmit-
ted to the PC via UART at a 115200 baud rate. The overall
sampling time is defined by N×Drange×M× (TSample +
TScanOut), where TSample + TScanOut is 750 cycles (75

Fig. 4: Memory hierarchy and data flow in our system design

Fig. 5: Experimental setup for CSA

µs@10MHz). Given Drange = 500, M = 32, and N = 1,
the total sampling time is 1.2 seconds per frame. Sampling
and transmission are pipelined to run concurrently; while the
UART transmission of 0.46 Mb takes 4 seconds, the system
initiates the next sampling during this time, overlapping oper-
ations to minimize idle time and optimize throughput despite
the UART occupying most of the frame time. Hence, this
system can achieve a frame rate of about 5 seconds per frame
for a 4×4 FPEC arrangement.

C. Experimental Setup

As shown in Fig. 5, MS and PWA are implemented on an
FPGA (Xilinx ZCU106) to collect and compress data from the
CSA. The compressed data is transmitted to a PC via USB
for further processing such as calibration, fusion 4 images
(60×120) into 1 whole frame (480×960), and 2D capacitance
image display through Python. A microscope is used to verify
the consistency between the capacitance and optical images.
The delay range is set as Dstart = 1000, Dend = 1500 to
cover sample value. The N is fixed to 1 and only M is varied
to evaluate the impact of MS in the following experiments,
and FPEC is set as 4×4 to balance between spatial resolution
and sensitivity.

IV. EXPERIMENTAL RESULT

A. Impact of Multiple Sampling Iterations

To evaluate the impact of number of M on the CSA’s
performance, we measured the capacitance of a deionized (DI)
water on the CSA five times. The average output values across



Fig. 6: Impact of multiple sampling iterations on mean and
standard deviation of CSA data

480×960 pixels were analyzed for the mean and standard
deviation as M increased from 1 to 128. The results, as
shown in Fig. 6, demonstrate that while the mean remained
stable, the standard deviation decreased from 2.15 at M
= 1 to 1.81 at M = 32, resulting in an improved SNR,
calculated as 10× log10(µ

2/σ2), from 23.64 dB to 25.25 dB,
respectively. Note that improvements were most up to M = 32,
beyond which further iterations showed diminishing returns.
Therefore, selecting M = 32 strikes a balance by minimizing
noise while reducing acquisition time.

B. Dual Droplets Sensing

The dual-droplet experiment aimed to extend the analysis
from last experiment by comparing the impact of M = 1
and M = 32 on CSA image quality, focusing on the shape
and the values of two distinct droplets: DMEM (culture
medium, CM) and DI water. Calibration data (Ccalib) was col-
lected first, followed by raw capacitive responses (Csample),
with final measurements obtained by subtracting the baseline
(Csample −Ccalib). The results in Fig. 7(a) and (b) show
differentiation between the two droplets. In (b) M = 32, the
random noise decreased due to MS, but this also made the
circuit-induced pattern noise more apparent compared to (a)
M = 1, suggesting that future efforts could focus on this.

In the blue-highlighted region of interest (ROI), the mean
values for CM and DI water remained stable, while the
standard deviation improved, with σCM=1 = 1.5 reducing to
σCM=32 = 1.31, and σDI=1 = 1.52 reducing to σDI=32 =
1.22, reflecting better measurement precision with increased
sampling. To demonstrate the CSA’s ability to reconstruct
droplet shapes in Fig. 7, OpenCV’s morphologyEx function
with a (5,5) kernel was applied to (b), clearly outlining the
droplet boundaries in (d), which closely matched the optical
image in (c). Thus, the reduction in random noise through MS
allowed for more precise measurement of both droplet shapes
and values, as the decrease in standard deviation highlights
the improved data accuracy.

C. Real-time Evaporation Monitoring

To demonstrate the system’s real-time monitoring capa-
bilities, a DI water droplet was placed on the CSA, and
the evaporation process was captured over 70 frames, with
each frame taken every 5 seconds, and M = 32. The results,
shown in Fig. 8, illustrate the gradual reduction in the droplet

Fig. 7: Dual droplets sensing of CM and DI water (a) M = 1
(b) M = 32 (c) optical image (d) edge detection

Fig. 8: Real-time DI water evaporation monitoring from Frame
0 to Frame 70, with 5 secs per frame

size over time, with the capacitive response decreasing as
the water evaporates. The full video of the experiment in
Fig 8 is available at: https://dx.doi.org/10.21227/h1m6-9c69
[14]. Comparison table is shown in Table I.

V. CONCLUSION

This paper presents an FPGA implementation for CMOS
CSA that employs PWA and MS to achieve efficient data
compression and noise reduction. PWA reduced data size from
118 Mb to 0.46 Mb and cut processing time from 17 minutes
to 5 seconds per frame. MS improved the SNR to 25.30
dB, enabling differentiation between culture medium and DI
water and allowing real-time water evaporation monitoring.
This FPGA implementation enhances real-time monitoring and
lays the groundwork for integrating MS and PWA into chip-
level designs—advancements crucial for future applications re-
quiring rapid and precise monitoring, such as super-resolution
imaging and high-frame-rate biological experiments including
droplet analysis and cell movement observation.

TABLE I: Comparison Table

TCASII’23 [12] This work
Method Single sampling Multiple sampling

FPGA function Read-out only Pixel-wise accumulation
Data size ∼118 Mb 0.46 Mb

Time for whole frame ∼17 minutes ∼5 seconds
Noise level (SNR) - 25.3 dB
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