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Abstract—Dielectrophoresis (DEP) is powerful for manip-
ulating biological cells. However, single cell manipulation is
usually time consuming and skill needed. This paper presents
a system that integrates AI for real-time image recognition
with a programmable dielectrophoresis (DEP) array chip for
automated particle manipulation. The system comprises a DEP
chip, an FPGA, a computer, a microscope, and a server. The
YOLO v8 model is used to detect particle positions within
microscope images and generate DEP manipulation patterns. The
system utilizes a Breadth-First Search (BFS) algorithm for path
planning, ensuring collision-free movement of particles within a
grid structure. Experimental results demonstrated the system’s
effectiveness in manipulating 20 µm polystyrene particles with
a success rate of over 90%. This system offers a significant
advancement in automated DEP-based manipulation, providing
precise control at micro scales with high computational efficiency.

Index Terms—Dielectrophoresis, DEP, YOLO v8, Image Recog-
nition, Particle Manipulate

I. INTRODUCTION

The precise control of micro and nano-sized particles has
driven advancements in dielectrophoresis (DEP) technology
in recent years. DEP is the phenomenon where a dielectric
particle experiences a force when subjected to a nonuniform
electric field [1].The direction of the DEP force is determined
by the relative polarizability of the particle compared to the
surrounding medium [2]. The DEP force can be positive
or negative. Positive DEP (pDEP) moves particles towards
regions of higher electric field, whereas negative DEP (nDEP)
moves them to regions with lower electric field. Nowadays,
DEP is widely used in applications such as drug delivery [3],
cell sorting [4], and cell characterization [5].

Single particle or cell manipulation using DEP has applica-
tions in fields such as cell behavior control and analysis [6],
studying cell interactions [7], and modulating cell aggregation
[8]–[10]. Automating these processes enhances scalability and
reduces the dependency on manual labor, making them feasible
for broader applications in both research and industry.

One major challenge in utilizing DEP is designing a system
to efficiently control the programmable electrode arrays to
generate dynamic electric fields for particle manipulation [11].
Conventional methods as shown in Fig 1(b), rely on human eye
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Fig. 1. (a) The experiment flow between our previous approach (b) and new
method (c) including using AI image recognition to accelerate the particle
control speed.

detection, are limited by prolonged detection times, making
real-time updates difficult. Additionally, manually generating
manipulation patterns requires significant expertise and time,
which is impractical for rapid and automated control.

Recent advances in deep learning, particularly in object
detection, provide promising solutions to these challenges.
YOLO (You Only Look Once), has proven highly effective due
to its balance of speed and accuracy [12]. YOLO v8, features
improvements in architecture and training methods, enhancing
real-time detection capabilities [13]. By integrating YOLO
v8 with DEP systems, it is possible to automate electrode
control pattern generation, improving efficiency and accuracy
in manipulating micro and nano-scale particles.

This work presents a system integrating the YOLO v8
model for real-time object detection with a programmable
DEP array chip. The system automates DEP control pattern
generation, enabling precise and rapid particle manipulation
without human intervention. The architecture includes an pro-



grmmable DEP chip, a FPGA for communicate, a microscope
for imaging, and a computer-server setup for processing and
control.

Our approach as shown in Fig 1(c), addresses the limitations
of manual pattern generation and slow position sensing by
leveraging YOLO v8’s real-time detection capabilities, com-
bined with automated path planning using a Breadth-First
Search (BFS) algorithm. This ensures collision-free movement
of particles within the DEP chip’s 128×128 electrode array,
achieving high computational efficiency and precise control
over particle trajectories.

II. SYSTEM ARCHITECTURE

A. System Overview

The system consists of five main components: the chip, the
FPGA, the computer, the microscope, and the server, shown
as Fig 2(a). The chip serves as the experimental platform,
where control signals are generated by an FPGA according
to commands issued by the computer module. These signals
are used to create DEP manipulation patterns on the chip.
The microscope captures images of the chip, while the server
module processes these images using YOLO v8 for object
detection. The server then returns the detection results to the
computer module.

B. Programmable DEP Chip Array

The chip used in this experiment is a programmable DEP
array chip with 128 × 128 electrodes. The chip generates
non-uniform electric fields by applying two sine waves with
different phases to the electrodes, producing a nDEP force to
move the particles. All forces are generated along the edges of
the electrodes with opposing phases. By surrounding one phase
with the other, a hollow DEP trap well is formed, effectively
confining the movement of the particles. Gradually moving
the position of this DEP trap well allows precise control of
particle movement to the desired location.

C. Hardware Equipment

The personal computer captures images through a micro-
scope and transmits the image data to the server using a
custom Python GUI. The detection results from the server
are then processed on the personal computer to generate a
control pattern, which is transmitted as UART format signals
to the FPGA. All operations are completed through a single
Python GUI, and the system only requires a standard personal
computer to operate.

In our system, the FPGA serves as a communication bridge
between the PC and the DEP chip. The PC transmits a series
of commands using the UART protocol, which the FPGA
receives and converts into scan chain signals required by the
DEP chip for operation.

III. PATTERN GENERATION

A. Objection Detection

For particle detection, we use the pre-trained YOLO v8
model built on the Common Objects in Context (COCO)

Fig. 2. (a) The system architecture over view. (b) Picture of the system. (c)
Close look of the DEP chip (d) DEP Chip under microscope view.

dataset, utilized 65 microscope images of PS particles, apply-
ing rotations of 90° and 180° to obtain a total of 195 images.
During training, the images were processed by cropping them
to a unified size of 800×800 pixels, adding noise to 1.97% of
the pixels, and adjusting saturation and brightness by ±30%
and ±25%, respectively, to enhance data augmentation. This
resulted in 402 images, of which 302 were used as training
data, 72 as validation data, and 28 as testing data. The model
was trained with a batch size of 16 for a total of 1000 epochs,
with early stopping applied. The final performance of particle
detection achieved an mAP of 96.2%, precision of 93.2%, and
recall of 91.3%.

After training, the model weights were packaged and de-
ployed on a server, allowing users within the same network
domain to upload images or stream live images using a we-
bcam. The server processes these images and quickly returns
detection results to the user via an HTTP POST request.
Performance tests showed that the system could support up
to 30 FPS video streams with an average response time of
less than 50 ms, demonstrating excellent real-time detection
capabilities.



Fig. 3. (a) A detection result of particle image and (b) the pattern generate
to automatically trap the particles.

B. Calibration

Image calibration affects the positional error between the
detected particle positions and their actual locations on the
chip. We adopt a manual calibration method to reduce this
error. The user needs to aligns two crosshairs with the top-
left and bottom-right corners of the chip displayed on the
screen to complete the calibration. Through measurements, the
calibration error does not exceed 5µm, which is an acceptable
margin. This error can be compensated by adjusting the size
of the hollow section in the generated pattern.

C. Pattern and Routing Method

After acquiring the particle positions, the system first ac-
tivates a circular DEP trap around each particle. This is
done to prevent particle displacement away from their initially
recognized positions. The size and internal hollow of each
DEP trap can be adjusted according to the size of the particles
being manipulated. Once the particles are secured, any selected
particle can be moved to a target position as specified by the
user.

For particle movement, Algorithm 1 is used, taking into
account the DEP traps around each particle, which act as
obstacles. Each moving particle must also have a surrounding
DEP trap to push it forward. Thus, in the implementation,
the DEP chip can be visualized as a 128 × 128 grid, where
obstacles are represented by the DEP traps of both the moving
and stationary particles, ensuring that they do not interfere with
each other. The BFS algorithm is used to identify a feasible
route, minimizing the pathfinding complexity. If there is no
available path that prevents interference between particles, the
user is notified that a valid path cannot be found. In such cases,
the user can reduce the size of the DEP traps to create more
space or first move particles obstructing the path.

IV. EXPERIMENT RESULTS

A. Particle Image Detection

As shown in Fig 3(a), YOLO v8 was employed to detect
particles within the microscope images. In most of the cases
we use confidence 0.5 and overlap 0.5 as the detection

Algorithm 1 Particle Movement Pathfinding Using BFS
Require: DEP Grid G of size 128×128, Initial Position Pinit,

Target Position Ptarget, DEP Trap Configuration T
Ensure: Valid Path to Move Particle or Notification of No

Path
1: Initialize BFS queue with Pinit

2: Set all DEP traps as obstacles in G
3: while queue is not empty do
4: Dequeue current position Pcurr

5: if Pcurr == Ptarget then
6: return path from Pinit to Ptarget

7: end if
8: Mark Pcurr as visited
9: for each neighbor Pneighbor of Pcurr do

10: if Pneighbor is not an obstacle and Pneighbor is not
visited then

11: Enqueue Pneighbor

12: Mark Pneighbor as visited
13: end if
14: end for
15: end while
16: Notify user: ”No valid path available”

Fig. 4. A path finding result for moving the particle from center to top left
corner than out of the chip.

parameter. Based on the detection results, the system automati-
cally generated corresponding DEP traps around the identified
particles as shown in Fig 3(b). It can be observed that the
actual positions of the particles align very closely with the
locations of the DEP traps, the close alignment between the
particle positions and DEP traps ensures effective containment
and manipulation.

To further evaluate the detection accuracy, we compared
the YOLO v8-detected positions with manually annotated
positions. The average AI detection error compared to manual
was calculated to be within 5 µm, which is well within
the acceptable limits for precise manipulation of nano-scale
particles, since the trap well we set have at least 40 µm hollow
for the 20 µm particle to be trapped. The success rate of
accurate DEP trap placement based on the detected positions
was over 95%.



Fig. 5. A series of images from left to right shows moving PS particle from center to top left corner than remove from the chip , with the system view (top)
showing the control pattern, and the microscope view (bottom) showing the PS particle.

B. Particle Selection and Path Planning

Upon successful particle detection, each particle is assigned
a unique identifier by the system. Users are then able to select
any particle and specify a target coordinate for movement. The
coordinate system is defined such that the top-left corner is (0,
0) and the bottom-right corner is (127, 127). After selecting
a target, the system uses a BFS algorithm to calculate and
visualize the planned path from the initial to the target position,
as shown in Fig 4.

To validate the path planning process, multiple scenarios
were tested with varying numbers of particles and different
initial and target positions. The system successfully generated
collision-free paths in all tested cases. In situations where a
valid path could not be found due to obstacles created by other
particles’ DEP traps, the system provided a notification, sug-
gesting adjustments to the trap size or the removal of blocking
particles. The BFS algorithm was found to be efficient, with
an average pathfinding time of under 10 ms.

C. Particle Movement

In this experiment, polystyrene (PS) particles with a diam-
eter of 20 µm were used. 1 MHz, 1.8 Vpp with a 180° phase
difference sine waves were used as the DEP control wave. Fig
5 shows a particle being moved from its initial position to the
specified target location.

The experimental results indicate that the particle success-
fully followed the planned path, and the DEP system effec-
tively generated the necessary forces to move the particle as
intended. The average time taken for each movement operation
was approximately 30 seconds, depending on the distance and
number of obstacles along the path. The stability of the DEP
traps ensured that the particle did not deviate from its intended
trajectory, even in the presence of minor external disturbances.

The effectiveness of particle movement was further evalu-
ated by repeating the movement process with different starting
and ending points 50 times. The success rate of moving the
particle to the desired position was over 90%.

TABLE I
A COMPARE TABLE OF EACH OPERATION’S COST TIME

Particle
detection

DEP trap
generation

Path
planning

Moving pattern
generation

Conventional
method 1∼3s >10min >1min >10min

Proposed
method <0.05s <0.01s <0.1s <1s

D. Result Comparison

Table I presents a comparison of the time taken by each
operation in the conventional and proposed methods. The
conventional approach required manual effort for particle
detection, DEP trap generation, path planning, and moving
pattern generation, leading to a significant amount of time per
operation. In our previous experiment, the average time from
detection to moving one particle is about half a hour. The
integration of particle detection and an automated BFS algo-
rithm for path planning drastically reduced the time required
for each stage of the manipulation process, with less than 10s
to finish the process.

V. CONCLUSION

This paper presents a system integrating YOLO v8 for real-
time image recognition with a programmable DEP array chip
for automated single particle manipulation. The experimen-
tal results demonstrate the system’s effectiveness, with over
90% success in accurately manipulating 20 µm polystyrene
particles. The use of YOLO v8 significantly enhances the
speed of particle detection and the DEP trap pattern generation
time, while the BFS algorithm ensures efficient and reliable
path planning for particle movement and generation of the
moving pattern. The system supports real-time detection at 30
FPS with a response time of under 50 ms. Future work will
focus on improving the scalability of the system for multi-
cell manipulation and optimizing DEP trap configurations for
enhanced particle control.
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